任务规划的挑战之一是找出导致计划失败的原因以及如何智能地处理失败。本文展示了如何实现这一目标。该想法是由连接的图形的启发:每个verticle表示一组兼容的\ extent {状态},每个边缘表示\ textit {action}。对于任何给定的初始状态和目标,我们构建虚拟操作以确保我们始终通过任务规划获得计划。本文展示了如何引入虚拟操作以扩展操作模型以使要连接的图形:i)显式定义静态谓词(类型,永久属性等)或动态谓词(状态);ii)为每个状态构建一个完整的虚拟动作或半虚拟动作;iii)通过逐步规划方法找到规划失败的原因。实施是在三种典型方案中进行评估。
translated by 谷歌翻译
“无限”软机械臂自由度的自由度使他们的控制尤其具有挑战性。在本文中,我们利用了先前开发的模型,将软臂的等效绘制到一系列通用接头,设计两个闭环控制器:用于轨迹跟踪的配置空间控制器和用于位置控制的任务空间控制器末端效应。在四段软手臂上的广泛实验和模拟证明了以下方面的大量改进:a)配置空间控制器的卓越的跟踪精度和B)减少了任务空间控制器的稳定时间和稳态误差。还验证了任务空间控制器在软臂和环境之间存在相互作用的情况下有效。
translated by 谷歌翻译
Current approaches to empathetic response generation typically encode the entire dialogue history directly and put the output into a decoder to generate friendly feedback. These methods focus on modelling contextual information but neglect capturing the direct intention of the speaker. We argue that the last utterance in the dialogue empirically conveys the intention of the speaker. Consequently, we propose a novel model named InferEM for empathetic response generation. We separately encode the last utterance and fuse it with the entire dialogue through multi-head attention based intention fusion module to capture the speaker's intention. Besides, we utilize previous utterances to predict the last utterance, which simulates human's psychology to guess what the interlocutor may speak in advance. To balance the optimizing rates of the utterance prediction and response generation, a multi-task learning strategy is designed for InferEM. Experimental results demonstrate the plausibility and validity of InferEM in improving empathetic expression.
translated by 谷歌翻译
在这项工作中,我们介绍了一个新颖的全球描述符,称为3D位置识别的稳定三角形描述符(STD)。对于一个三角形,其形状由侧面或包含角度的长度唯一决定。此外,三角形的形状对于刚性转换完全不变。基于此属性,我们首先设计了一种算法,以从3D点云中有效提取本地密钥点,并将这些关键点编码为三角形描述符。然后,通过匹配点云之间描述符的侧面长度(以及其他一些信息)来实现位置识别。从描述符匹配对获得的点对应关系可以在几何验证中进一步使用,从而大大提高了位置识别的准确性。在我们的实验中,我们将我们提出的系统与公共数据集(即Kitti,NCLT和Complex-ublan)和我们自我收集的数据集(即M2DP,扫描上下文)进行了广泛的比较(即M2DP,扫描上下文)(即带有非重复扫描固态激光雷达)。所有定量结果表明,性病具有更强的适应性,并且在其对应物方面的精度有了很大的提高。为了分享我们的发现并为社区做出贡献,我们在GitHub上开放代码:https://github.com/hku-mars/std。
translated by 谷歌翻译
基于点云的3D单一对象跟踪(3DSOT)吸引了越来越多的注意力。已经取得了许多突破,但我们也揭示了两个严重的问题。通过广泛的分析,我们发现当前方法的预测方式是非持bust的,即暴露了预测得分和实际定位精度之间的错位差距。另一个问题是稀疏点返回将损坏SOT任务的功能匹配过程。基于这些见解,我们介绍了两个新型模块,即自适应改进预测(ARP)和目标知识转移(TKT),以解决它们。为此,我们首先设计了强大的管道来提取区分特征,并使用注意机制进行匹配程序。然后,建议通过汇总所有具有宝贵线索的预测候选人来解决未对准问题。最后,由于稀疏和遮挡问题,TKT模块旨在有效克服不完整的点云。我们称我们的整体框架PCET。通过在Kitti和Waymo Open数据集上进行广泛的实验,我们的模型可以实现最新的性能,同时保持较低的计算消耗。
translated by 谷歌翻译
由于3D对象检测和2D MOT的快速发展,3D多对象跟踪(MOT)已取得了巨大的成就。最近的高级工作通常采用一系列对象属性,例如位置,大小,速度和外观,以提供3D MOT的关联线索。但是,由于某些视觉噪音,例如遮挡和模糊,这些提示可能无法可靠,从而导致跟踪性能瓶颈。为了揭示困境,我们进行了广泛的经验分析,以揭示每个线索的关键瓶颈及其彼此之间的相关性。分析结果激发了我们有效地吸收所有线索之间的优点,并适应性地产生最佳的应对方式。具体而言,我们提出位置和速度质量学习,该学习有效地指导网络估计预测对象属性的质量。基于这些质量估计,我们提出了一种质量意识的对象关联(QOA)策略,以利用质量得分作为实现强大关联的重要参考因素。尽管具有简单性,但广泛的实验表明,提出的策略可显着提高2.2%的AMOTA跟踪性能,而我们的方法的表现优于所有现有的最先进的Nuscenes上的最新作品。此外,Qtrack在Nuscenes验证和测试集上实现了48.0%和51.1%的AMOTA跟踪性能,这大大降低了纯摄像头和基于LIDAR的跟踪器之间的性能差距。
translated by 谷歌翻译
许多基于点的3D检测器采用点功能采样策略来提出一些分数以提高推断。这些策略通常基于固定和手工制作的规则,因此难以处理复杂的场景。与它们不同的是,我们提出了一个动态球查询(DBQ)网络,以根据输入特征自适应地选择输入点的子集,并为每个选定的点分配特征转换,并具有合适的接受场。它可以嵌入到一些最新的3D检测器中,并以端到端的方式进行训练,从而大大降低计算成本。广泛的实验表明,我们的方法可以在Kitti和Waymo数据集中将延迟降低30%-60%。具体而言,我们的检测器的推理速度分别可以在Kitti和Waymo数据集上具有可忽略的性能降解,可以达到162 fps和30 fps。
translated by 谷歌翻译
自主驾驶的感知模型需要在低潜伏期内快速推断。尽管现有作品忽略了处理后不可避免的环境变化,但流媒体感知将延迟和准确性共同评估为视频在线感知的单个度量标准,从而指导先前的工作以搜索准确性和速度之间的权衡。在本文中,我们探讨了该指标上实时模型的性能,并赋予模型预测未来的能力,从而显着改善了流媒体感知的结果。具体来说,我们构建了一个具有两个有效模块的简单框架。一个是双流感知模块(DFP)。它分别由捕获运动趋势和基本检测特征并行的动态流和静态流动。趋势意识损失(TAL)是另一个模块,它以其移动速度适应每个对象的体重。实际上,我们考虑了多个速度驾驶场景,并进一步提出了含量不足的流媒体AP(VSAP)以共同评估准确性。在这种现实的环境中,我们设计了一种有效的混合速度训练策略,以指导检测器感知任何速度。我们的简单方法与强大的基线相比,在Argoverse-HD数据集上实现了最先进的性能,并将SAP和VSAP分别提高了4.7%和8.2%,从而验证了其有效性。
translated by 谷歌翻译
在各种计算机视觉任务(例如对象检测,实例分段等)中,无监督的域适应至关重要。他们试图减少域偏差诱导的性能下降,同时还促进模型应用速度。域适应对象检测中的先前作品尝试使图像级和实例级别变化对准以最大程度地减少域差异,但是它们可能会使单级功能与图像级域适应中的混合级功能相结合,因为对象中的每个图像中的每个图像检测任务可能不止一个类和对象。为了通过单级对齐获得单级和混合级对齐方式,我们将功能的混合级视为新班级,并建议使用混合级$ h-divergence $,以供对象检测到实现均匀特征对准并减少负转移。然后,还提出了基于混合级$ h-Divergence $的语义一致性特征对齐模型(SCFAM)。为了改善单层和混合级的语义信息并完成语义分离,SCFAM模型提出了语义预测模型(SPM)和语义桥接组件(SBC)。然后根据SPM结果更改PIX域鉴别器损耗的重量,以减少样品不平衡。广泛使用的数据集上的广泛无监督域的适应实验说明了我们所提出的方法在域偏置设置中的强大对象检测。
translated by 谷歌翻译
心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译